Nana Sumarna, Yoo Ekayana Kansil


Conceptual understanding is very important for pre-service teacher because conceptual understanding is a set of mathematical concepts’ quantity and quality measure that are represented in the form of knowledge and skills network contained therein. The elements of this network can be concepts, rules (algorithms, procedures, etc.), and problem-solving. This study attempted to found alternative solution focusing on mathematics learning conditions in the classroom, through learning experimentation study using mathematical investigation approach. Subjects were 111 PGSD pre-service teachers in one of state university in Southeast Sulawesi. Results suggested that there was a significant conceptual understanding difference between pre-service teacher receiving mathematics investigation approach compared to those receiving expository approach (p=0,000; p< 0,005) and there was no interaction between prior knowledge with learning approach to pre-service teachers’ conceptual understanding improvement. Therefore, investigation approach can be implemented for all prior knowledge level because this approach proved to improve conceptual under-standing.


Pemahaman konseptual sangat penting bagi seorang calon guru karena pemahaman konseptual merupakan sekumpulan ukuran kualitas dan kuantitas pada konsep-konsep matematika yang direpresentasikan dalam bentuk jaringan pengetahuan tertentu dan keterampilan yang terdapat didalamnya. Unsur-unsur dari jaringan ini dapat berupa konsep, aturan (algoritma, prosedur, dan lain sebagainya), dan pemecahan masalah. Penelitian ini berusaha mencari solusi alternatif dengan memusatkan perhatian pada kondisi pembelajaran matematika yang selama ini berlangsung di ruang perkuliahan, melalui penelitian eksperimentasi pembelajaran dengan pendekatan investigasi matematika. Subyek penelitian ini adalah 111 mahasiswa PGSD di salah satu perguruan tinggi negeri di Sulawesi Tenggara. Hasil penelitian menunjukkan bahwa terdapat perbedaan pemahaman konseptual yang signifikan pada mahasiswa yang memperoleh pembelajaran dengan pendekatan investigasi matematika dibandingkan dengan pendekatan eskpositori (p= 0,000; p< 0,005) dan tidak terdapat pengaruh interaksi antara kemampuan awal matematika dan pendekatan pembelajaran terhadap peningkatan kemampuan pemahaman konseptual mahasiswa. Oleh karena itu, pendekatan investigasi dapat diberlakukan pada seluruh level kemampuan awal karena telah terbukti dapat meningkatkan pemahaman konseptual.


Mathematical Investigation; Conceptual Understanding; PGSD students; Investigasi Matematika; Pemahaman Konseptual; Mahasiswa PGSD

Full Text:



Amarto, S. A. and Watson, A. (2003). Improving student teachers' understanding of multiplication by two digit numbers. In N. A. Pateman, B.J. Dougherty, & J. Zilliox (Eds.). Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education and the 25th Conference of PME-NA. Honolulu, HI: PME.

Baturo, A., & Nason, R. (1996). Student teachers subject matter knowledge within the domain of area measurement. Educational Studies in Mathematics. Vol.31 No.3, hlm. 235-268

Brown, T., McNamara, O.; Hanley,U.; & Jones, L.;. (1999). Primary student teachers’ understanding of mathematics and its teaching. British Educational Research Journal Vol.25 No.3, hlm. 299-322.

Chick, H. L. (2002). Pre-service primary teachers' assessment of and performance on multiplicative numeracy items. In A. D. Cockburn, & E. Nardi (Eds.). Proceedings of the 26th Annual Conference of the International Group for the Psychology of Mathematics. Norwich, UK: PME.

Copes, L. (2008). Discovering Geometry : An Investigative Approach. Emeryville : Key Curriculum Press.

Grouws, D. A. (2004). Chapter 7. Mathematics. In Handbook of Research on Improving Student Achievement, 3rd ed., edited by G. Cawelti. Arlington, Va.: Educational Research Service.

Haapasalo & Kadijevich. (2000). Simultaneous activation of conceptual and Procedural mathematical knowledge by means of ClassPad.[online].https://edutice.archives-ouvertes.fr/edutice-00001347/document.

Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. Grouws (Ed.), Handbook of research on mathematics research and teaching (pp. 65-100). New York, NY: MacMillan.

Killpatrick, J; Swafford, J; & Findell, B. (2001). Adding It Up. Helping Children Learn Mathematics. Washington DC: National Academy Press.

Lester, F.K., Maki, D.P., LeBlanc, J.F., & Kroll, D.L. (1992). Preparing elementary teachers to teach mathematics: a problemsolving approach. Final report Vol. II, content component. Bloomington: Indiana University, Mathematics Education Development Center.

Libeskind, S. (2011). Teaching mathematics for Prospective Elementary School Teachers: What textbooks don’t tell. Primus: Problems, Resources, and Issues in Mathematics Undergraduate Studies, Vol.21 No.5, hlm.473-484.

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers understanding of fundamental mathe-matics in China and the United States. Mahwah, NJ: Lawrence Erlbaum.

McAllister, C. J., & Beaver, C. (2012). Identification of error types in preservice teachers attempts to create fraction story problems for specified operations. School Science and Mathematics Vol.112 No.2, hlm. 88-98.

McLeod, K., & Huinker, D. (2007). Mathematics focus courses: Mathematics content for elementary and middle grades teachers. International Journal of Mathematical Education in Science and Technology. Vol.38 No.7, hlm. 949-962.

Morris, H. (2001). Issues raised by testing trainee primary teachers' mathematical knowledge. Mathematics Teacher Education and Development, Vol.3, hlm.37-47.

Murphy, C. (2012). The role of subject knowledge in primary prospective teacher approaches to teaching the topic of area. Journal of Mathematics Teacher Education Vol.15 No.3, hlm.187- 206.

National Commission on Mathematics and Science Teaching for the Twenty-First Century. (2000). Before it’s too late: A report to the nation. [online]. http://www.nationalmathandscience.org/sites/default/files/resource/.

Skemp, R. R. (1978). Relational understanding and instrumental understanding. Arithmetic Teacher Vol.26 No.3, hlm. 9-15.

Southwell, Beth & Penglase, Marina (2005). Mathematical Knowledge Of Pre- service Primary Teachers. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education Vol.4, hlm.209-216.

Vaiyavutjamia, P., Ellerton, N. F. and Clements, M. A. (2005). Students’ attempts to solve two elementary quadratic equations: A study in three nations. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonagh, R. Pierce & A. Roche (Eds.), Building connections: Research, theory and practice. Sydney, Australia: Mathematics Education Research Group of Australia.

Yager, R. (1991). The constructivist learning model, towards real reform in science education. The Science Teacher Vol.58 No.6, hlm.52-57.

Zevenbergen, R. (2005). Primary pre-service teachers‟ understandings of volume: The impact of course and practicum experiences. Mathematics Education Research Journal Vol.17 No.1, hlm.3-23.

DOI: http://dx.doi.org/10.18269/jpmipa.v21i1.653


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats